34. Let \(f(x) = 1 \) if \(x \) is rational and \(f(x) = 0 \) if \(x \) is irrational. Prove that \(\lim_{x \to c} f(x) \) does not exist for any \(c \).

SOLUTION Let \(c \) be any number, and let \(\delta > 0 \) be an arbitrary small number. We will prove that there is an \(x \) such that \(|x - c| < \delta \), but \(|f(x) - f(c)| > \frac{1}{\delta} \). \(c \) must be either irrational or rational. If \(c \) is rational, then \(f(c) = 1 \). Since the irrational numbers are dense, there is at least one irrational number \(z \) such that \(|z - c| < \delta \). \(|f(z) - f(c)| = 1 > \frac{1}{\delta} \), so the function is discontinuous at \(x = c \).

On the other hand, if \(c \) is irrational, then there is a rational number \(q \) such that \(|q - c| < \delta \). \(|f(q) - f(c)| = |1 - 0| = 1 > \frac{1}{\delta} \), so the function is discontinuous at \(x = c \).

35. Here is a function with strange continuity properties:

\[
f(x) = \begin{cases}
\frac{1}{q} & \text{if } x \text{ is the rational number } p/q \text{ in lowest terms} \\
0 & \text{if } x \text{ is an irrational number}
\end{cases}
\]

(a) Show that \(f(x) \) is discontinuous at \(c \) if \(c \) is rational. **Hint:** There exist irrational numbers arbitrarily close to \(c \).

(b) Show that \(f(x) \) is continuous at \(c \) if \(c \) is irrational. **Hint:** Let \(I \) be the interval \(\{x : |x - c| < 1\} \). Show that for any \(Q > 0 \), \(I \) contains at most finitely many fractions \(p/q \) with \(q < Q \). Conclude that there is a \(\delta \) such that all fractions in \(\{x : |x - c| < \delta\} \) have a denominator larger than \(Q \).

SOLUTION

(a) Let \(c \) be any rational number and suppose that, in lowest terms, \(c = p/q \), where \(p \) and \(q \) are integers. To prove the discontinuity of \(f \) at \(c \), we must show there is an \(\epsilon > 0 \) such that for any \(\delta > 0 \) there is an \(x \) for which \(|x - c| < \delta \), but that \(|f(x) - f(c)| > \epsilon \). Let \(\epsilon = \frac{1}{2q} \) and \(\delta > 0 \). Since there is at least one irrational number between any two distinct real numbers, there is some irrational \(x \) between \(c \) and \(c + \delta \). Hence, \(|x - c| < \delta \), but \(|f(x) - f(c)| = |0 - \frac{1}{q}| = \frac{1}{q} > \frac{1}{2q} = \epsilon \).

(b) Let \(c \) be irrational, let \(\epsilon > 0 \) be given, and let \(N > 0 \) be a prime integer sufficiently large so that \(\frac{1}{N} < \epsilon \). Let \(\frac{p_1}{q_1}, \ldots, \frac{p_m}{q_m} \) be all rational numbers \(\frac{p}{q} \) in lowest terms such that \(\frac{|p_i}{q_i} - c| < 1 \) and \(q < N \). Since \(N \) is finite, this is a finite list; hence, one number \(\frac{p_i}{q_i} \) in the list must be closest to \(c \). Let \(\delta = \frac{1}{2} \frac{|p_i|}{q_i} - c \). By construction, \(|\frac{p_i}{q_i} - c| > \delta \) for all \(i = 1, \ldots, m \). Therefore, for any rational number \(\frac{p}{q} \) such that \(|\frac{p}{q} - c| < \delta, q > N \), so \(\frac{p}{q} < \frac{p_i}{q_i} < c \).

Therefore, for any rational number \(x \) such that \(|x - c| < \delta \), \(|f(x) - f(c)| < \epsilon \). |f(x) - f(c)| = 0 for any irrational number \(x \), so \(|x - c| < \delta \) implies that \(|f(x) - f(c)| < \epsilon \) for any number \(x \).

CHAPTER REVIEW EXERCISES

1. The position of a particle at time \(t \) (s) is \(s(t) = \sqrt{t^2 + 1} \) m. Compute its average velocity over \([2, 5]\) and estimate its instantaneous velocity at \(t = 2 \).

SOLUTION Let \(s(t) = \sqrt{t^2 + 1} \). The average velocity over \([2, 5]\) is

\[
\frac{s(5) - s(2)}{5 - 2} = \frac{\sqrt{26} - \sqrt{5}}{3} \approx 0.954 \text{ m/s}.
\]

From the data in the table below, we estimate that the instantaneous velocity at \(t = 2 \) is approximately 0.894 m/s.

<table>
<thead>
<tr>
<th>interval</th>
<th>[1.9, 2]</th>
<th>[1.99, 2]</th>
<th>[1.999, 2]</th>
<th>[2.2, 001]</th>
<th>[2.2, 01]</th>
<th>[2.2, 1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>average ROC</td>
<td>0.889769</td>
<td>0.893978</td>
<td>0.894382</td>
<td>0.894472</td>
<td>0.894873</td>
<td>0.898727</td>
</tr>
</tbody>
</table>

2. The “wellhead” price \(p \) of natural gas in the United States (in dollars per 1000 ft\(^3\)) on the first day of each month in 2008 is listed in the table below.

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>6.99</td>
<td>7.55</td>
<td>8.29</td>
<td>8.94</td>
<td>9.81</td>
<td>10.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>10.62</td>
<td>8.32</td>
<td>7.27</td>
<td>6.36</td>
<td>5.97</td>
<td>5.87</td>
</tr>
</tbody>
</table>

Compute the average rate of change of \(p \) (in dollars per 1000 ft\(^3\) per month) over the quarterly periods January–March, April–June, and July–September.

SOLUTION To determine the average rate of change in price over the first quarter, divide the difference between the April and January prices by the three-month duration of the quarter. This yields

\[
\frac{8.94 - 6.99}{3} = 0.65 \text{ dollars per 1000 ft}^3 \text{ per month}.
\]
In a similar manner, we calculate the average rates of change for the second and third quarters of the year to be

\[\frac{10.62 - 8.94}{3} = 0.56 \text{ dollars per 1000 ft}^3 \text{ per month.} \]

and

\[\frac{6.36 - 10.62}{3} = -1.42 \text{ dollars per 1000 ft}^3 \text{ per month.} \]

3. For a whole number \(n \), let \(P(n) \) be the number of partitions of \(n \), that is, the number of ways of writing \(n \) as a sum of one or more whole numbers. For example, \(P(4) = 5 \) since the number 4 can be partitioned in five different ways: \(4, 3 + 1, 2 + 2, 2 + 1 + 1, \) and \(1 + 1 + 1 + 1 \). Treating \(P(n) \) as a continuous function, use Figure 1 to estimate the rate of change of \(P(n) \) at \(n = 12 \).

\[P(n) \]

\[\begin{array}{c|cccccc}
\text{average ROC} & 0.744256 & 0.744199 & 0.744193 & 0.744195 & 0.744187 & 0.744131 \\
\end{array} \]

In Exercises 5–10, estimate the limit numerically to two decimal places or state that the limit does not exist.

5. \(\lim_{x \to 0} \frac{1 - \cos^3(x)}{x^2} \)

SOLUTION Let \(f(x) = \frac{1 - \cos^3(x)}{x^2} \). The data in the table below suggests that

\[\lim_{x \to 0} \frac{1 - \cos^3(x)}{x^2} \approx 1.50. \]

In constructing the table, we take advantage of the fact that \(f \) is an even function.

\[\begin{array}{c|ccc}
x & \pm 0.001 & \pm 0.01 & \pm 0.1 \\
f(x) & 1.500000 & 1.499912 & 1.491275 \\
\end{array} \]

(The exact value is \(\frac{3}{2} \).)

6. \(\lim_{x \to 1} x^{1/(x-1)} \)

SOLUTION Let \(f(x) = x^{1/(x-1)} \). The data in the table below suggests that

\(\lim_{x \to 1} x^{1/(x-1)} \approx 2.72. \)

\[\begin{array}{c|cccccc}
x & 0.9 & 0.99 & 0.999 & 1.001 & 1.01 & 1.1 \\
f(x) & 2.867972 & 2.731999 & 2.719642 & 2.716924 & 2.704814 & 2.593742 \\
\end{array} \]

(The exact value is \(e \).)
7. \(\lim_{x \to 2} \frac{x^4 - 4}{x^2 - 4} \)

SOLUTION Let \(f(x) = \frac{x^4 - 4}{x^2 - 4} \). The data in the table below suggests that

\[
\lim_{x \to 2} \frac{x^4 - 4}{x^2 - 4} \approx 1.69.
\]

<table>
<thead>
<tr>
<th>x</th>
<th>1.9</th>
<th>1.99</th>
<th>1.999</th>
<th>2.001</th>
<th>2.01</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>1.575461</td>
<td>1.680633</td>
<td>1.691888</td>
<td>1.694408</td>
<td>1.705836</td>
<td>1.828386</td>
</tr>
</tbody>
</table>

(The exact value is \(1 + \ln 2 \).)

8. \(\lim_{x \to 2} \frac{x - 2}{\ln(3x - 5)} \)

SOLUTION Let \(f(x) = \frac{x - 2}{\ln(3x - 5)} \). The data in the table below suggests that

\[
\lim_{x \to 2} \frac{x - 2}{\ln(3x - 5)} \approx 0.33.
\]

<table>
<thead>
<tr>
<th>x</th>
<th>1.9</th>
<th>1.99</th>
<th>1.999</th>
<th>2.001</th>
<th>2.01</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>0.280367</td>
<td>0.328308</td>
<td>0.332833</td>
<td>0.333833</td>
<td>0.338309</td>
<td>0.381149</td>
</tr>
</tbody>
</table>

(The exact value is \(1/3 \).)

9. \(\lim_{x \to 1} \left(\frac{7}{1-x^3} - \frac{3}{1-x^3} \right) \)

SOLUTION Let \(f(x) = \left(\frac{7}{1-x^3} - \frac{3}{1-x^3} \right) \). The data in the table below suggests that

\[
\lim_{x \to 1} \left(\frac{7}{1-x^3} - \frac{3}{1-x^3} \right) \approx 2.00.
\]

<table>
<thead>
<tr>
<th>x</th>
<th>0.9</th>
<th>0.99</th>
<th>0.999</th>
<th>1.001</th>
<th>1.01</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>2.347483</td>
<td>2.033498</td>
<td>2.003335</td>
<td>1.996668</td>
<td>1.966835</td>
<td>1.685059</td>
</tr>
</tbody>
</table>

(The exact value is 2.)

10. \(\lim_{x \to 2} \frac{3^x - 9}{5^x - 25} \)

SOLUTION Let \(f(x) = \frac{3^x - 9}{5^x - 25} \). The data in the table below suggests that

\[
\lim_{x \to 2} \frac{3^x - 9}{5^x - 25} \approx 0.246.
\]

<table>
<thead>
<tr>
<th>x</th>
<th>1.9</th>
<th>1.99</th>
<th>1.999</th>
<th>2.001</th>
<th>2.01</th>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>0.251950</td>
<td>0.246365</td>
<td>0.245801</td>
<td>0.245675</td>
<td>0.245110</td>
<td>0.239403</td>
</tr>
</tbody>
</table>

(The exact value is \(\frac{3 \ln 3}{25 \ln 5} \).)

In Exercises 11–50, evaluate the limit if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

11. \(\lim_{x \to 4} (3 + x^{1/2}) \)

SOLUTION \(\lim_{x \to 4} (3 + x^{1/2}) = 3 + \sqrt{7} = 5. \)

12. \(\lim_{x \to 1} \frac{5 - x^2}{4x + 7} \)

SOLUTION \(\lim_{x \to 1} \frac{5 - x^2}{4x + 7} = \frac{5 - 1^2}{4(1) + 7} = \frac{4}{11} \).

13. \(\lim_{x \to 2} \frac{4}{x^3} \)
19. \lim_{x \to -2} x^3 = \frac{4}{(-2)^3} = \frac{1}{2}.

14. \lim_{x \to 1} \frac{3x^2 + 4x + 1}{x + 1}

SOLUTION \lim_{x \to -1} \frac{3x^2 + 4x + 1}{x + 1} = \lim_{x \to -1} \frac{(3x + 1)(x + 1)}{x + 1} = \lim_{x \to -1} (3x + 1) = 3(-1) + 1 = -2.

15. \lim_{t \to 9} \frac{\sqrt{t} - 3}{t - 9}

SOLUTION \lim_{t \to 9} \frac{\sqrt{t} - 3}{t - 9} = \lim_{t \to 9} \frac{\sqrt{t} - 3}{\sqrt{t} - 3(\sqrt{t} + 3)} = \lim_{t \to 9} \frac{1}{\sqrt{t} + 3} = \frac{1}{\sqrt{9} + 3} = \frac{1}{6}.

16. \lim_{x \to 3} \frac{\sqrt{x} + 1 - 2}{x - 3}

SOLUTION

\begin{align*}
\lim_{x \to 3} \frac{\sqrt{x} + 1 - 2}{x - 3} &= \lim_{x \to 3} \frac{\sqrt{x} + 1 - 2}{x - 3} \\
&= \lim_{x \to 3} \frac{\sqrt{x} + 1 + 2}{x - 3} = \lim_{x \to 3} \frac{(x + 1) - 4}{(x - 3)(\sqrt{x} + 1 + 2)} \\
&= \lim_{x \to 3} \frac{1}{\sqrt{x} + 1 + 2} = \frac{1}{3 + 1 + 2} = \frac{1}{4}.
\end{align*}

17. \lim_{x \to 1} \frac{x^3 - x}{x - 1}

SOLUTION \lim_{x \to 1} \frac{x^3 - x}{x - 1} = \lim_{x \to 1} \frac{x(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} x(x + 1) = 1(1 + 1) = 2.

18. \lim_{h \to 0} \frac{2(a + h)^2 - 2a^2}{h}

SOLUTION

\begin{align*}
\lim_{h \to 0} \frac{2(a + h)^2 - 2a^2}{h} &= \lim_{h \to 0} \frac{2a^2 + 4ah + 2h^2 - 2a^2}{h} = \lim_{h \to 0} \frac{h(4a + 2h)}{h} = \lim_{h \to 0} (4a + 2h) = 4a + 2(0) = 4a.
\end{align*}

19. \lim_{t \to 9} \frac{t - 6}{\sqrt{t} - 3}

SOLUTION Because the one-sided limits

\[
\lim_{t \to 9^+} \frac{t - 6}{\sqrt{t} - 3} = -\infty \quad \text{and} \quad \lim_{t \to 9^-} \frac{t - 6}{\sqrt{t} - 3} = \infty,
\]

are not equal, the two-sided limit

\[
\lim_{t \to 9} \frac{t - 6}{\sqrt{t} - 3}
\]

does not exist.

20. \lim_{s \to 0} \frac{1 - \sqrt{s^2 + 1}}{s^2}

SOLUTION

\begin{align*}
\lim_{s \to 0} \frac{1 - \sqrt{s^2 + 1}}{s^2} &= \lim_{s \to 0} \frac{1 - \sqrt{s^2 + 1}}{s^2} \cdot \frac{1 + \sqrt{s^2 + 1}}{1 + \sqrt{s^2 + 1}} = \lim_{s \to 0} \frac{1 - (s^2 + 1)}{s^2(1 + \sqrt{s^2 + 1})} \\
&= \lim_{s \to 0} \frac{-1}{1 + \sqrt{s^2 + 1}} = \frac{-1}{1 + \sqrt{0^2 + 1}} = \frac{-1}{2}.
\end{align*}

21. \lim_{x \to 1^+} \frac{1}{x + 1}

SOLUTION For \(x > -1, x + 1 > 0\). Therefore,

\[
\lim_{x \to 1^+} \frac{1}{x + 1} = \infty.
\]

22. \lim_{y \to 4} \frac{3y^2 + 5y - 2}{6y^2 - 5y + 1}

SOLUTION
SOLUTION

\[\lim_{y \to \frac{3}{4}} \frac{3y^2 + 5y - 2}{6y^2 - 5y + 1} = \lim_{y \to \frac{3}{4}} \frac{(3y - 1)(y + 2)}{(3y - 1)(2y - 1)} = \lim_{y \to \frac{3}{4}} \frac{y + 2}{2y - 1} = -7. \]

23. \[\lim_{x \to 1} \frac{x^3 - 2x}{x - 1} \]

SOLUTION Because the one-sided limits

\[\lim_{x \to 1^-} \frac{x^3 - 2x}{x - 1} = \infty \quad \text{and} \quad \lim_{x \to 1^+} \frac{x^3 - 2x}{x - 1} = -\infty, \]

are not equal, the two-sided limit

\[\lim_{x \to 1} \frac{x^3 - 2x}{x - 1} \]

does not exist.

24. \[\lim_{a \to b} \frac{a^2 - 3ab + 2b^2}{a - b} \]

SOLUTION

\[\lim_{a \to b} \frac{a^2 - 3ab + 2b^2}{a - b} = \lim_{a \to b} \frac{(a - b)(a - 2b)}{a - b} = \lim_{a \to b} (a - 2b) = b - 2b = -b. \]

25. \[\lim_{x \to 0} \frac{e^{3x} - e^x}{e^x - 1} \]

SOLUTION

\[\lim_{x \to 0} \frac{e^{3x} - e^x}{e^x - 1} = \lim_{x \to 0} \frac{e^x(e^x - 1)(e^x + 1)}{e^x - 1} = \lim_{x \to 0} e^x(e^x + 1) = 1 \cdot 2 = 2. \]

26. \[\lim_{\theta \to 0} \frac{\sin 5\theta}{\theta} \]

SOLUTION

\[\lim_{\theta \to 0} \frac{\sin 5\theta}{\theta} = 5 \lim_{\theta \to 0} \frac{\sin 5\theta}{5\theta} = 5(1) = 5. \]

27. \[\lim_{x \to 1.5} [x] \]

SOLUTION

\[\lim_{x \to 1.5} [x] = [1.5] = 1 \quad \text{at} \quad 1.5 = \frac{2}{3}. \]

28. \[\lim_{\theta \to \frac{\pi}{4}} \sec \theta \]

SOLUTION

\[\lim_{\theta \to \frac{\pi}{4}} \sec \theta = \sec \frac{\pi}{4} = \sqrt{2}. \]

29. \[\lim_{z \to 3} \frac{z + 3}{z^2 + 4z + 3} \]

SOLUTION

\[\lim_{z \to 3} \frac{z + 3}{z^2 + 4z + 3} = \lim_{z \to 3} \frac{z + 3}{(z + 3)(z + 1)} = \lim_{z \to 3} \frac{1}{z + 1} = \frac{1}{2}. \]

30. \[\lim_{x \to 1} \frac{x^3 - ax^2 + ax - 1}{x - 1} \]

SOLUTION Using

\[x^3 - ax^2 + ax - 1 = (x - 1)(x^2 + x + 1) - ax(x - 1) = (x - 1)(x^2 + x - ax + 1) \]

we find

\[\lim_{x \to 1} \frac{x^3 - ax^2 + ax - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x - ax + 1)}{x - 1} = \lim_{x \to 1} (x^2 + x - ax + 1) \]

\[= 1^2 + 1 - a(1) + 1 = 3 - a. \]
31. \(\lim_{x \to b} \frac{x^3 - b^3}{x - b} \)

SOLUTION

\[
\lim_{x \to b} \frac{x^3 - b^3}{x - b} = \lim_{x \to b} \frac{(x - b)(x^2 + xb + b^2)}{x - b} = \lim_{x \to b} (x^2 + xb + b^2) = b^2 + b(b) + b^2 = 3b^2.
\]

32. \(\lim_{x \to 0} \frac{\sin 4x}{\sin 3x} \)

SOLUTION

\[
\lim_{x \to 0} \frac{\sin 4x}{\sin 3x} = \frac{4}{3} \lim_{x \to 0} \frac{\sin 4x}{4x} \cdot \frac{3x}{\sin 3x} = \frac{4}{3} \lim_{x \to 0} \frac{\sin 4x}{4x} \cdot \lim_{x \to 0} \frac{3x}{3x} = \frac{4}{3}(1)(1) = \frac{4}{3}.
\]

33. \(\lim_{x \to 0} \left(\frac{1}{3x} - \frac{1}{x(x + 3)} \right) \)

SOLUTION

\[
\lim_{x \to 0} \left(\frac{1}{3x} - \frac{1}{x(x + 3)} \right) = \lim_{x \to 0} \frac{(x + 3) - 3}{3x(x + 3)} = \lim_{x \to 0} \frac{1}{3(x + 3)} = \frac{1}{3} = \frac{1}{3}.
\]

34. \(\lim_{\theta \to \frac{\pi}{4}} \tan(\pi \theta) \)

SOLUTION

\[
\lim_{\theta \to \frac{\pi}{4}} \tan(\pi \theta) = \tan(\pi \cdot \frac{\pi}{4}) = \tan(\frac{\pi^2}{4}) = 3^\pi = 3.
\]

35. \(\lim_{x \to 0^+} \frac{[x]}{x} \)

SOLUTION

For \(x \) sufficiently close to zero but negative, \([x] = -1\). Therefore,

\[
\lim_{x \to 0^-} \frac{[x]}{x} = \lim_{x \to 0^-} \frac{-1}{x} = \infty.
\]

36. \(\lim_{x \to 0^-} \frac{[x]}{x} \)

SOLUTION

For \(x \) sufficiently close to zero but positive, \([x] = 0\). Therefore,

\[
\lim_{x \to 0^+} \frac{[x]}{x} = \lim_{x \to 0^+} \frac{0}{x} = 0.
\]

37. \(\lim_{\theta \to \frac{\pi}{4}} \theta \sec \theta \)

SOLUTION

Because the one-sided limits

\[
\lim_{\theta \to \frac{\pi}{4}^-} \theta \sec \theta = \infty \quad \text{and} \quad \lim_{\theta \to \frac{\pi}{4}^+} \theta \sec \theta = -\infty
\]

are not equal, the two-sided limit

\[
\lim_{\theta \to \frac{\pi}{4}} \theta \sec \theta \quad \text{does not exist.}
\]

38. \(\lim_{y \to 2} \left(\sin \frac{\pi}{y} \right) \)

SOLUTION

\[
\lim_{y \to 2} \left(\sin \frac{\pi}{y} \right) = \ln \left(\sin \frac{\pi}{2} \right) = \ln 1 = 0.
\]

39. \(\lim_{\theta \to 0} \frac{\cos \theta - 2}{\theta} \)

SOLUTION

Because the one-sided limits

\[
\lim_{\theta \to 0^-} \frac{\cos \theta - 2}{\theta} = \infty \quad \text{and} \quad \lim_{\theta \to 0^+} \frac{\cos \theta - 2}{\theta} = -\infty
\]

are not equal, the two-sided limit

\[
\lim_{\theta \to 0} \frac{\cos \theta - 2}{\theta} \quad \text{does not exist.}
\]
40. \[\lim_{x \to 4.3} \frac{1}{x - [x]} \]
SOLUTION \[\lim_{x \to 4.3} \frac{1}{x - [x]} = \frac{1}{4.3 - 4.3} = \frac{1}{0.3} = \frac{10}{3}. \]

41. \[\lim_{x \to 2} \frac{x - 3}{x - 2} \]
SOLUTION For \(x \) close to 2 but less than 2, \(x - 3 < 0 \) and \(x - 2 < 0 \). Therefore,
\[\lim_{x \to 2^{-}} \frac{x - 3}{x - 2} = \infty. \]

42. \[\lim_{t \to 0} \frac{\sin^2 t}{t^5} \]
SOLUTION Note that
\[\frac{\sin^2 t}{t^3} = \frac{\sin t}{t} \cdot \frac{\sin t}{t} \cdot \frac{1}{t}. \]
As \(t \to 0 \), each factor of \(\frac{\sin t}{t} \) approaches 1; however, the factor \(\frac{1}{t} \) tends to \(-\infty \) as \(t \to 0^- \) and tends to \(\infty \) as \(t \to 0^+ \). Consequently,
\[\lim_{t \to 0^-} \frac{\sin^2 t}{t^3} = -\infty, \quad \lim_{t \to 0^+} \frac{\sin^2 t}{t^3} = \infty \]
and
\[\lim_{t \to 0} \frac{\sin^2 t}{t^3} \] does not exist.

43. \[\lim_{x \to 1^+} \left(\frac{1}{\sqrt{x - 1}} - \frac{1}{\sqrt{x^2 - 1}} \right) \]
SOLUTION \[\lim_{x \to 1^+} \left(\frac{1}{\sqrt{x - 1}} - \frac{1}{\sqrt{x^2 - 1}} \right) = \lim_{x \to 1^+} \frac{\sqrt{x + 1} - 1}{\sqrt{x^2 - 1}} = \infty. \]

44. \[\lim_{t \to e} \sqrt[t]{(\ln t - 1)} \]
SOLUTION
\[\lim_{t \to e} \sqrt[t]{(\ln t - 1)} = \lim_{t \to e} \sqrt[t]{\ln t} \cdot \lim_{t \to e} (\ln t - 1) = \sqrt[e]{(\ln e - 1)} = 0. \]

45. \[\lim_{x \to \frac{\pi}{2}} \tan x \]
SOLUTION Because the one-sided limits
\[\lim_{x \to \frac{\pi}{2}^{-}} \tan x = \infty \quad \text{and} \quad \lim_{x \to \frac{\pi}{2}^{+}} \tan x = -\infty \]
are not equal, the two-sided limit
\[\lim_{x \to \frac{\pi}{2}} \tan x \] does not exist.

46. \[\lim_{t \to 0} \frac{1}{t} \]
SOLUTION As \(t \to 0 \), \(\frac{1}{t} \) grows without bound and \(\cos \left(\frac{1}{t} \right) \) oscillates faster and faster. Consequently,
\[\lim_{t \to 0} \cos \left(\frac{1}{t} \right) \] does not exist.

The same is true for both one-sided limits.

47. \[\lim_{t \to 0^+} \sqrt[t]{\cos \frac{1}{t}} \]
CHAPTER 2 | LIMITS

SOLUTION For \(t > 0 \),

\[-1 \leq \cos \left(\frac{1}{t} \right) \leq 1,\]

so

\[-\sqrt{t} \leq \sqrt{t} \cos \left(\frac{1}{t} \right) \leq \sqrt{t}.\]

Because

\[
\lim_{t \to 0^+} -\sqrt{t} = \lim_{t \to 0^+} \sqrt{t} = 0.
\]

it follows from the Squeeze Theorem that

\[
\lim_{t \to 0^+} \sqrt{t} \cos \left(\frac{1}{t} \right) = 0.
\]

48. \(\lim_{x \to 5^+} \frac{x^2 - 24}{x^2 - 25} \)

SOLUTION For \(x \) close to 5 but larger than 5, \(x^2 - 24 > 0 \) and \(x^2 - 25 > 0 \). Therefore,

\[
\lim_{x \to 5^+} \frac{x^2 - 24}{x^2 - 25} = \infty.
\]

49. \(\lim_{x \to 0} \frac{\cos x - 1}{\sin x} \)

SOLUTION

\[
\lim_{x \to 0} \frac{\cos x - 1}{\sin x} = \lim_{x \to 0} \frac{\cos x - 1}{\sin x} = \lim_{x \to 0} \frac{-\sin^2 x}{\cos x + 1} = \lim_{x \to 0} \frac{-\sin x}{\cos x + 1} = 0.
\]

50. \(\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta} \)

SOLUTION

\[
\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta} = \lim_{\theta \to 0} \frac{\sec \theta - 1}{\sin^2 \theta} = \lim_{\theta \to 0} \frac{\sec \theta - 1}{\sin^2 \theta} = \lim_{\theta \to 0} \frac{\sec \theta + 1}{\sin^2 \theta (\sec \theta + 1)} = \lim_{\theta \to 0} \frac{\sec^2 \theta}{\sec \theta + 1} = \frac{1}{1 + 1} = \frac{1}{2}.
\]

51. Find the left- and right-hand limits of the function \(f(x) \) in Figure 2 at \(x = 0, 2, 4 \). State whether \(f(x) \) is left- or right-continuous (or both) at these points.

![Figure 2](image)

SOLUTION According to the graph of \(f(x) \),

\[
\begin{align*}
\lim_{x \to 0^-} f(x) &= \lim_{x \to 0^+} f(x) = 1 \\
\lim_{x \to 2^-} f(x) &= \lim_{x \to 2^+} f(x) = \infty \\
\lim_{x \to 4^-} f(x) &= -\infty \\
\lim_{x \to 4^+} f(x) &= \infty.
\end{align*}
\]

The function is both left- and right-continuous at \(x = 0 \) and neither left- nor right-continuous at \(x = 2 \) and \(x = 4 \).
52. Sketch the graph of a function \(f(x) \) such that
(a) \(\lim_{x \to 2^-} f(x) = 1, \quad \lim_{x \to 2^+} f(x) = 3 \)
(b) \(\lim_{x \to 4} f(x) \) exists but does not equal \(f(4) \).

SOLUTION

\[y \]

\[x \]

53. Graph \(h(x) \) and describe the discontinuity:
\[h(x) = \begin{cases}
 e^x & \text{for } x \leq 0 \\
 \ln x & \text{for } x > 0
\end{cases} \]

Is \(h(x) \) left- or right-continuous?

SOLUTION The graph of \(h(x) \) is shown below. At \(x = 0 \), the function has an infinite discontinuity but is left-continuous.

54. Sketch the graph of a function \(g(x) \) such that
\[\lim_{x \to 3^-} g(x) = \infty, \quad \lim_{x \to 3^+} g(x) = -\infty, \quad \lim_{x \to 4} g(x) = \infty \]

SOLUTION

55. Find the points of discontinuity of
\[g(x) = \begin{cases}
 \cos \left(\frac{\pi x}{2} \right) & \text{for } |x| < 1 \\
 |x - 1| & \text{for } |x| \geq 1
\end{cases} \]

Determine the type of discontinuity and whether \(g(x) \) is left- or right-continuous.

SOLUTION First note that \(\cos \left(\frac{\pi x}{2} \right) \) is continuous for \(-1 < x < 1\) and that \(|x - 1|\) is continuous for \(x \leq -1 \) and for \(x \geq 1 \). Thus, the only points at which \(g(x) \) might be discontinuous are \(x = \pm 1 \). At \(x = 1 \), we have
\[\lim_{x \to 1^-} g(x) = \lim_{x \to 1^-} \cos \left(\frac{\pi x}{2} \right) = \cos \left(\frac{\pi}{2} \right) = 0 \]
and
\[\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} |x - 1| = |1 - 1| = 0. \]
so \(g(x) \) is continuous at \(x = 1 \). On the other hand, at \(x = -1 \),

\[
\lim_{x \to -1^+} g(x) = \lim_{x \to -1^+} \cos \left(\frac{\pi x}{2} \right) = \cos \left(\frac{-\pi}{2} \right) = 0
\]

and

\[
\lim_{x \to -1^-} g(x) = \lim_{x \to -1^-} |x - 1| = |1 - 1| = 2.
\]

so \(g(x) \) has a jump discontinuity at \(x = -1 \). Since \(g(-1) = 2 \), \(g(x) \) is left-continuous at \(x = -1 \).

56. Show that \(f(x) = xe^{\sin x} \) is continuous on its domain.

SOLUTION Because \(e^x \) and \(\sin x \) are continuous for all real numbers, their composition, \(e^{\sin x} \) is continuous for all real numbers. Moreover, \(x \) is continuous for all real numbers, so the product \(xe^{\sin x} \) is continuous for all real numbers. Thus, \(f(x) = xe^{\sin x} \) is continuous for all real numbers.

57. Find a constant \(b \) such that \(h(x) \) is continuous at \(x = 2 \), where

\[
h(x) = \begin{cases}
 x + 1 & \text{for } |x| < 2 \\
 b - x^2 & \text{for } |x| \geq 2
\end{cases}
\]

With this choice of \(b \), find all points of discontinuity.

SOLUTION To make \(h(x) \) continuous at \(x = 2 \), we must have the two one-sided limits as \(x \) approaches 2 be equal. With

\[
\lim_{x \to 2^-} h(x) = \lim_{x \to 2^-} (x + 1) = 2 + 1 = 3
\]

and

\[
\lim_{x \to 2^+} h(x) = \lim_{x \to 2^+} (b - x^2) = b - 4,
\]

it follows that we must choose \(b = 7 \). Because \(x + 1 \) is continuous for \(-2 < x < 2 \) and \(7 - x^2 \) is continuous for \(x \leq -2 \) and for \(x \geq 2 \), the only possible point of discontinuity is \(x = -2 \). At \(x = -2 \),

\[
\lim_{x \to -2^+} h(x) = \lim_{x \to 2^-} (x + 1) = -2 + 1 = -1
\]

and

\[
\lim_{x \to -2^-} h(x) = \lim_{x \to -2^-} (7 - x^2) = 7 - (-2)^2 = 3,
\]

so \(h(x) \) has a jump discontinuity at \(x = -2 \).

In Exercises 58–63, find the horizontal asymptotes of the function by computing the limits at infinity.

58. \(f(x) = \frac{9x^2 - 4}{2x^2 - x} \)

SOLUTION Because

\[
\lim_{x \to \infty} \frac{9x^2 - 4}{2x^2 - x} = \lim_{x \to \infty} \frac{9 - 4/x^2}{2 - 1/x} = \frac{9}{2}
\]

and

\[
\lim_{x \to -\infty} \frac{9x^2 - 4}{2x^2 - x} = \lim_{x \to -\infty} \frac{9 - 4/x^2}{2 - 1/x} = \frac{9}{2},
\]

it follows that the graph of \(y = \frac{9x^2 - 4}{2x^2 - x} \) has a horizontal asymptote of \(\frac{9}{2} \).

59. \(f(x) = \frac{x^2 - 3x^4}{x - 1} \)

SOLUTION Because

\[
\lim_{x \to \infty} \frac{x^2 - 3x^4}{x - 1} = \lim_{x \to \infty} \frac{1/x^2 - 3}{1/x - 1/x^4} = -\infty
\]

and

\[
\lim_{x \to -\infty} \frac{x^2 - 3x^4}{x - 1} = \lim_{x \to -\infty} \frac{1/x^2 - 3}{1/x - 1/x^4} = \infty,
\]

it follows that the graph of \(y = \frac{x^2 - 3x^4}{x - 1} \) does not have any horizontal asymptotes.
60. \(f(u) = \frac{8u - 3}{\sqrt{16u^2 + 6}} \)

Solution Because

\[
\lim_{u \to \infty} \frac{8u - 3}{\sqrt{16u^2 + 6}} = \lim_{u \to \infty} \frac{8 - 3/u}{\sqrt{16 + 6/u^2}} = \frac{8}{\sqrt{16}} = 2
\]

and

\[
\lim_{u \to -\infty} \frac{8u - 3}{\sqrt{16u^2 + 6}} = \lim_{u \to -\infty} \frac{8 - 3/u}{\sqrt{16 + 6/u^2}} = \frac{8}{-\sqrt{16}} = -2,
\]

it follows that the graph of \(y = \frac{8u - 3}{\sqrt{16u^2 + 6}} \) has horizontal asymptotes of \(y = \pm 2 \).

61. \(f(u) = \frac{2u^2 - 1}{\sqrt{6 + u^4}} \)

Solution Because

\[
\lim_{u \to \infty} \frac{2u^2 - 1}{\sqrt{6 + u^4}} = \lim_{u \to \infty} \frac{2 - 1/u^2}{\sqrt{6/u^4 + 1}} = \frac{2}{\sqrt{1}} = 2
\]

and

\[
\lim_{u \to -\infty} \frac{2u^2 - 1}{\sqrt{6 + u^4}} = \lim_{u \to -\infty} \frac{2 - 1/u^2}{\sqrt{6/u^4 + 1}} = \frac{2}{\sqrt{1}} = 2,
\]

it follows that the graph of \(y = \frac{2u^2 - 1}{\sqrt{6 + u^4}} \) has a horizontal asymptote of \(y = 2 \).

62. \(f(x) = \frac{3x^{2/3} + 9x^{3/7}}{7x^{4/5} - 4x^{-1/3}} \)

Solution Because

\[
\lim_{x \to \infty} \frac{3x^{2/3} + 9x^{3/7}}{7x^{4/5} - 4x^{-1/3}} = \lim_{x \to \infty} \frac{3x^{-2/15} + 9x^{-13/35}}{7 - x^{-17/15}} = 0
\]

and

\[
\lim_{x \to -\infty} \frac{3x^{2/3} + 9x^{3/7}}{7x^{4/5} - 4x^{-1/3}} = \lim_{x \to -\infty} \frac{3x^{-2/15} + 9x^{-13/35}}{7 - x^{-17/15}} = 0,
\]

it follows that the graph of \(y = \frac{3x^{2/3} + 9x^{3/7}}{7x^{4/5} - 4x^{-1/3}} \) has a horizontal asymptote of \(y = 0 \).

63. \(f(t) = \frac{t^{1/3} - t^{-1/3}}{(t - t^{-1})^{1/3}} \)

Solution Because

\[
\lim_{t \to \infty} \frac{t^{1/3} - t^{-1/3}}{(t - t^{-1})^{1/3}} = \lim_{t \to \infty} \frac{1 - t^{2/3}}{(1 - t^{-2})^{1/3}} = \frac{1}{1^{1/3}} = 1
\]

and

\[
\lim_{t \to -\infty} \frac{t^{1/3} - t^{-1/3}}{(t - t^{-1})^{1/3}} = \lim_{t \to -\infty} \frac{1 - t^{2/3}}{(1 - t^{-2})^{1/3}} = \frac{1}{1^{1/3}} = 1,
\]

it follows that the graph of \(y = \frac{t^{1/3} - t^{-1/3}}{(t - t^{-1})^{1/3}} \) has a horizontal asymptote of \(y = 1 \).

64. Calculate (a)–(d), assuming that

\[
\lim_{x \to 3} f(x) = 6, \quad \lim_{x \to 3} g(x) = 4
\]

(a) \(\lim_{x \to 3} (f(x) - 2g(x)) \)

(b) \(\lim_{x \to 3} x^2 f(x) \)

(c) \(\lim_{x \to 3} \frac{f(x)}{g(x) + x} \)

(d) \(\lim_{x \to 3} (2g(x)^3 - g(x)^{3/2}) \)
SOLUTION

(a) \(\lim_{x \to 3} (f(x) - 2g(x)) = \lim_{x \to 3} f(x) - 2 \lim_{x \to 3} g(x) = 6 - 2(4) = -2. \)

(b) \(\lim_{x \to 3} x^2 f(x) = \lim_{x \to 3} x^2 \cdot \lim_{x \to 3} f(x) = 3^2 \cdot 6 = 54. \)

(c) \(\lim_{x \to 3} \frac{f(x)}{g(x) + x} = \lim_{x \to 3} \frac{f(x)}{g(x) + x} = \frac{6}{\lim_{x \to 3} g(x) + \lim_{x \to 3} x} = \frac{6}{4 + 3} = \frac{6}{7}. \)

(d) \(\lim_{x \to 3} (2g(x)^3 - g(x)^{3/2}) = \left(\lim_{x \to 3} g(x) \right)^3 - \left(\lim_{x \to 3} g(x) \right)^{3/2} = (2)^3 - (2)^{3/2} = 8 - \sqrt{8} = 8 - 2\sqrt{2}. \)

65. Assume that the following limits exist:

\[A = \lim_{x \to a} f(x), \quad B = \lim_{x \to a} g(x), \quad L = \lim_{x \to a} \frac{f(x)}{g(x)} \]

Prove that if \(L = 1, \) then \(A = B. \) *Hint:* You cannot use the Quotient Law if \(B = 0, \) so apply the Product Law to \(L \) and \(B \) instead.

SOLUTION Suppose the limits \(A, B, \) and \(L \) all exist and \(L = 1. \) Then

\[B = B \cdot L = \lim_{x \to a} g(x) \cdot \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} g(x) \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) = A. \]

66. Define \(g(t) = (1 + 2^{1/t})^{-1} \) for \(t \neq 0. \) How should \(g(0) \) be defined to make \(g(t) \) left-continuous at \(t = 0? \)

SOLUTION Because

\[\lim_{t \to 0^-} (1 + 2^{1/t})^{-1} = \left[\lim_{t \to 0^-} (1 + 2^{1/t}) \right]^{-1} = 1^{-1} = 1, \]

we should define \(g(0) = 1 \) to make \(g(t) \) left-continuous at \(t = 0. \)

67. In the notation of Exercise 65, give an example where \(L \) exists but neither \(A \) nor \(B \) exists.

SOLUTION Suppose

\[f(x) = \frac{1}{(x-a)^3}, \quad g(x) = \frac{1}{(x-a)^5}. \]

Then, neither \(A \) nor \(B \) exists, but

\[L = \lim_{x \to a} \frac{(x-a)^3}{(x-a)^5} = \lim_{x \to a} (x-a)^{-2} = 0. \]

68. True or false?

(a) If \(\lim_{x \to 3} f(x) \) exists, then \(\lim_{x \to 3} f(x) = f(3). \)

(b) If \(\lim_{x \to 0} \frac{f(x)}{x} = 1, \) then \(f(0) = 0. \)

(c) If \(\lim_{x \to 7} f(x) = 8, \) then \(\lim_{x \to 7} \frac{1}{f(x)} = \frac{1}{8}. \)

(d) If \(\lim_{x \to 5^+} f(x) = 4 \) and \(\lim_{x \to 5^-} f(x) = 8, \) then \(\lim_{x \to 5} f(x) = 6. \)

(e) If \(\lim_{x \to 0} \frac{f(x)}{x} = 1, \) then \(\lim_{x \to 0} f(x) = 0. \)

(f) If \(\lim_{x \to 5} f(x) = 2, \) then \(\lim_{x \to 5} f(x)^3 = 8. \)

SOLUTION

(a) False. The limit \(\lim_{x \to 3} f(x) \) may exist and need not equal \(f(3). \) The limit is equal to \(f(3) \) if \(f(x) \) is continuous at \(x = 3. \)

(b) False. The value of the limit \(\lim_{x \to 0} \frac{f(x)}{x} \) does not depend on the value \(f(0), \) so \(f(0) \) can have any value.

(c) True, by the Limit Laws.

(d) False. If the two one-sided limits are not equal, then the two-sided limit does not exist.

(e) True. Apply the Product Law to the functions \(\frac{f(x)}{x} \) and \(x. \)

(f) True, by the Limit Laws.

69. Let \(f(x) = x \left[\frac{1}{x} \right], \) where \(\left[x \right] \) is the greatest integer function. Show that for \(x \neq 0, \)

\[\frac{1}{x} - 1 < \left[\frac{1}{x} \right] \leq \frac{1}{x} \]

Then use the Squeeze Theorem to prove that

\[\lim_{x \to 0} x \left[\frac{1}{x} \right] = 1 \]

Hint: Treat the one-sided limits separately.
SOLUTION Let y be any real number. From the definition of the greatest integer function, it follows that $y - 1 < \lceil y \rceil \leq y$, with equality holding if and only if y is an integer. If $x \neq 0$, then $\frac{1}{x}$ is a real number, so

$$ \frac{1}{x} - 1 < \left\lfloor \frac{1}{x} \right\rfloor \leq \frac{1}{x}. $$

Upon multiplying this inequality through by x, we find

$$ 1 - x < x \left\lfloor \frac{1}{x} \right\rfloor \leq 1. $$

Because

$$ \lim_{x \to 0} (1 - x) = \lim_{x \to 0} 1 = 1, $$

it follows from the Squeeze Theorem that

$$ \lim_{x \to 0} x \left\lfloor \frac{1}{x} \right\rfloor = 1. $$

70. Let r_1 and r_2 be the roots of $f(x) = ax^2 - 2x + 20$. Observe that $f(x)$ “approaches” the linear function $L(x) = -2x + 20$ as $a \to 0$. Because $r = 10$ is the unique root of $L(x)$, we might expect one of the roots of $f(x)$ to approach 10 as $a \to 0$ (Figure 3). Prove that the roots can be labeled so that $\lim_{a \to 0} r_1 = 10$ and $\lim_{a \to 0} r_2 = \infty$.

![Figure 3: Graphs of $f(x) = ax^2 - 2x + 20$.](image)

SOLUTION Using the quadratic formula, we find that the roots of the quadratic polynomial $f(x) = ax^2 - 2x + 20$ are

$$ r_1 = \frac{20}{1 + \sqrt{1 - 20a}}, \quad r_2 = \frac{20}{1 - \sqrt{1 - 20a}}. $$

Now let

$$ r_1 = \frac{20}{1 + \sqrt{1 - 20a}} \quad \text{and} \quad r_2 = \frac{20}{1 - \sqrt{1 - 20a}}. $$

It is straightforward to calculate that

$$ \lim_{a \to 0} r_1 = \lim_{a \to 0} \frac{20}{1 + \sqrt{1 - 20a}} = \frac{20}{2} = 10 $$

and that

$$ \lim_{a \to 0} r_2 = \lim_{a \to 0} \frac{20}{1 - \sqrt{1 - 20a}} = \infty $$

as desired.

71. Use the IVT to prove that the curves $y = x^2$ and $y = \cos x$ intersect.

SOLUTION Let $f(x) = x^2 - \cos x$. Note that any root of $f(x)$ corresponds to a point of intersection between the curves $y = x^2$ and $y = \cos x$. Now, $f(x)$ is continuous over the interval $[0, \frac{\pi}{2}]$, $f(0) = -1 < 0$ and $f\left(\frac{\pi}{2}\right) = \frac{\pi^2}{4} > 0$. Therefore, by the Intermediate Value Theorem, there exists a $c \in (0, \frac{\pi}{2})$ such that $f(c) = 0$; consequently, the curves $y = x^2$ and $y = \cos x$ intersect.

72. Use the IVT to prove that $f(x) = x^3 - \frac{x^2 + 2}{\cos x + 2}$ has a root in the interval $[0, 2]$.

SOLUTION Let $f(x) = x^3 - \frac{x^2 + 2}{\cos x + 2}$. Because $\cos x + 2$ is never zero, $f(x)$ is continuous for all real numbers. Because

$$ f(0) = -2 < 0 \quad \text{and} \quad f(2) = 8 - \frac{6}{\cos 2 + 2} \approx 4.21 > 0, $$

the Intermediate Value Theorem guarantees there exists a $c \in (0, 2)$ such that $f(c) = 0$.

73. Use the IVT to show that \(e^{-x^2} = x \) has a solution on \((0, 1)\).

SOLUTION Let \(f(x) = e^{-x^2} - x \). Observe that \(f \) is continuous on \([0, 1]\) with \(f(0) = e^0 - 0 = 1 > 0 \) and \(f(1) = e^{-1} - 1 < 0 \). Therefore, the IVT guarantees there exists a \(c \in (0, 1) \) such that \(f(c) = e^{-c^2} - c = 0 \).

74. Use the Bisection Method to locate a solution of \(x^2 - 7 = 0 \) to two decimal places.

SOLUTION Let \(f(x) = x^2 - 7 \). By trial and error, we find that \(f(2.6) = -0.24 < 0 \) and \(f(2.7) = 0.29 > 0 \). Because \(f(x) \) is continuous on \([2.6, 2.7]\), it follows from the Intermediate Value Theorem that \(f(x) \) has a root on \((2.6, 2.7)\). We approximate the root by the midpoint of the interval: \(x = 2.65 \). Now, \(f(2.65) = 0.0225 > 0 \). Because \(f(2.6) \) and \(f(2.65) \) are of opposite sign, the root must lie on \((2.6, 2.65)\). The midpoint of this interval is \(x = 2.625 \) and \(f(2.625) < 0 \); hence, the root must be on the interval \((2.625, 2.65)\). Continuing in this fashion, we construct the following sequence of intervals and midpoints.

<table>
<thead>
<tr>
<th>interval</th>
<th>midpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.625, 2.65)</td>
<td>2.6375</td>
</tr>
<tr>
<td>(2.6375, 2.65)</td>
<td>2.64375</td>
</tr>
<tr>
<td>(2.64375, 2.65)</td>
<td>2.646875</td>
</tr>
<tr>
<td>(2.64375, 2.646875)</td>
<td>2.6453125</td>
</tr>
<tr>
<td>(2.6453125, 2.646875)</td>
<td>2.64609375</td>
</tr>
</tbody>
</table>

At this point, we note that, to two decimal places, one root of \(x^2 - 7 = 0 \) is 2.65.

75. Give an example of a (discontinuous) function that does not satisfy the conclusion of the IVT on \([-1, 1]\). Then show that the function

\[
f(x) = \begin{cases}
\sin \frac{1}{x} & \text{if } x \neq 0 \\
0 & \text{if } x = 0
\end{cases}
\]

satisfies the conclusion of the IVT on every interval \([-a, a]\), even though \(f \) is discontinuous at \(x = 0 \).

SOLUTION Let \(g(x) = |x| \). This function is discontinuous on \([-1, 1]\) with \(g(-1) = -1 \) and \(g(1) = 1 \). For all \(c \neq 0 \), there is no \(x \) such that \(g(x) = c \); thus, \(g(x) \) does not satisfy the conclusion of the Intermediate Value Theorem on \([-1, 1]\).

Now, let

\[
f(x) = \begin{cases}
\sin \left(\frac{1}{x} \right) & \text{for } x \neq 0 \\
0 & \text{for } x = 0
\end{cases}
\]

and let \(a > 0 \). On the interval

\[
x \in \left[-\frac{a}{2+2\pi a}, \frac{a}{2} \right] \subseteq [-a, a],
\]

\(\frac{1}{x} \) runs from \(\frac{a}{2} \) to \(\frac{a}{2} + 2\pi \), so the sine function covers one full period and clearly takes on every value from \(-\sin a\) through \(\sin a\).

76. Let \(f(x) = \frac{1}{x+2} \).

(a) Show that \(|f(x) - \frac{1}{4}| < \frac{|x-2|}{12} \) if \(|x-2| < 1 \). *Hint: Observe that \(|4(x+2)| > 12 \) if \(|x-2| < 1 \).*

(b) Find \(\delta > 0 \) such that \(|f(x) - \frac{1}{4}| < 0.01 \) for \(|x-2| < \delta \).

(c) Prove rigorously that \(\lim_{x \to 2} f(x) = \frac{1}{4} \).

SOLUTION

(a) Let \(f(x) = \frac{1}{x+2} \). Then

\[
|f(x) - \frac{1}{4}| = \left| \frac{1}{x+2} - \frac{1}{4} \right| = \frac{|4 - (x+2)|}{4(x+2)} = \frac{|x-2|}{|4(x+2)|}.
\]

If \(|x-2| < 1 \), then \(1 < x < 3 \), so \(3 < x+2 < 5 \) and \(12 < 4(x+2) < 20 \). Hence,

\[
\frac{1}{|4(x+2)|} < \frac{1}{12} \quad \text{and} \quad |f(x) - \frac{1}{4}| < \frac{|x-2|}{12}.
\]

(b) If \(|x-2| < \delta \), then by part (a),

\[
|f(x) - \frac{1}{4}| < \frac{\delta}{12}.
\]

Choosing \(\delta = 0.12 \) will then guarantee that \(|f(x) - \frac{1}{4}| < 0.01 \).
(c) Let $\epsilon > 0$ and take $\delta = \min\{1, 12\epsilon\}$. Then, whenever $|x - 2| < \delta$,

$$|f(x) - \frac{1}{4}| = \frac{1}{|x + 2|} \frac{1}{4} \frac{|2 - x|}{|x + 2|} \frac{1}{\frac{x - 2}{12}} < \frac{\delta}{12} = \epsilon.$$

77. [GU] Plot the function $f(x) = x^{1/3}$. Use the zoom feature to find a $\delta > 0$ such that $|x^{1/3} - 2| < 0.05$ for $|x - 8| < \delta$.

SOLUTION The graphs of $y = f(x) = x^{1/3}$ and the horizontal lines $y = 1.95$ and $y = 2.05$ are shown below. From this plot, we see that $\delta = 0.55$ guarantees that $|x^{1/3} - 2| < 0.05$ whenever $|x - 8| < \delta$.

![Graph of $x^{1/3}$](image)

78. Use the fact that $f(x) = 2^x$ is increasing to find a value of δ such that $|2^x - 8| < 0.001$ if $|x - 2| < \delta$. Hint: Find c_1 and c_2 such that $7.999 < f(c_1) < f(c_2) < 8.001$.

SOLUTION From the graph below, we see that $7.999 < f(2.99985) < f(3.00015) < 8.001$.

Thus, with $\delta = 0.00015$, it follows that $|2^x - 8| < 0.001$ if $|x - 3| < \delta$.

![Graph of 2^x](image)

79. Prove rigorously that $\lim_{x \to -1} (4 + 8x) = -4$.

SOLUTION Let $\epsilon > 0$ and take $\delta = \epsilon/8$. Then, whenever $|x - (-1)| = |x + 1| < \delta$,

$$|f(x) - (-4)| = |4 + 8x + 4| = 8|x + 1| < 8\delta \leq \epsilon.$$

80. Prove rigorously that $\lim_{x \to 3} (x^2 - x) = 6$.

SOLUTION Let $\epsilon > 0$ and take $\delta = \min\{1, \epsilon/6\}$. Because $\delta \leq 1$, $|x - 3| < \delta$ guarantees $|x + 2| < 6$. Therefore, whenever $|x - 3| < \delta$,

$$|f(x) - 6| = |x^2 - x - 6| = |x - 3||x + 2| < 6|x - 3| < 6\delta \leq \epsilon.$$