54. Use the Product Rule twice to find a formula for \((fg)''\) in terms of \(f\) and \(g\) and their first and second derivatives.

SOLUTION Let \(h = fg \). Then \(h' = fg' + gf' = f'g + fg' \) and
\[
h'' = f''g + 2f'g' + g'' + 2gf' + fg''.
\]

55. Use the Product Rule to find a formula for \((fg)^n\) and compare your result with the expansion of \((a + b)^3\). Then try to guess the general formula for \((fg)^n\).

SOLUTION Continuing from Exercise 54, we have
\[
h''' = f''''g + 2f''g' + g'' + 2gf' + fg''.
\]
The binomial theorem gives
\[
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3b^0 + 3a^2b^1 + 3a^1b^2 + a^0b^3
\]
and more generally
\[
(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k,
\]
where the binomial coefficients are given by
\[
\binom{n}{k} = \frac{k(k-1) \cdots (k-n+1)}{n!}.
\]
Accordingly, the general formula for \((fg)^n\) is given by
\[
(fg)^n = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)},
\]
where \(p^{(k)} \) is the \(k \)th derivative of \(p \) (or \(p \) itself when \(k = 0 \)).

56. Compute
\[
\Delta f(x) = \lim_{h\to0} \frac{f(x + h) + f(x - h) - 2f(x)}{h^2}
\]
for the following functions:

(a) \(f(x) = x \) \hspace{1cm} (b) \(f(x) = x^2 \) \hspace{1cm} (c) \(f(x) = x^3 \)

Based on these examples, what do you think the limit \(\Delta f \) represents?

SOLUTION For \(f(x) = x \), we have
\[
f(x + h) + f(x - h) - 2f(x) = (x + h) + (x - h) - 2x = 0.
\]
Hence, \(\Delta(x) = 0 \). For \(f(x) = x^2 \),
\[
f(x + h) + f(x - h) - 2f(x) = (x + h)^2 + (x - h)^2 - 2x^2
\]
\[
= x^2 + 2xh + h^2 + x^2 - 2xh + h^2 - 2x^2 = 2h^2.
\]
so \(\Delta(x^2) = 2 \). Working in a similar fashion, we find \(\Delta(x^3) = 6x \). One can prove that for twice differentiable functions, \(\Delta f = f'' \). It is an interesting fact of more advanced mathematics that there are functions \(f \) for which \(\Delta f \) exists at all points, but the function is not differentiable.

3.6 Trigonometric Functions

Preliminary Questions

1. Determine the sign (+ or −) that yields the correct formula for the following:

(a) \(\frac{d}{dx} (\sin x + \cos x) = \pm \sin x \pm \cos x \)

(b) \(\frac{d}{dx} \sec x = \pm \sec x \tan x \)

(c) \(\frac{d}{dx} \cot x = \pm \csc^2 x \)
SOLUTION The correct formulas are

(a) \(\frac{d}{dx}(\sin x + \cos x) = -\sin x + \cos x \)

(b) \(\frac{d}{dx}\sec x = \sec x \tan x \)

(c) \(\frac{d}{dx}\cot x = -\csc^2 x \)

2. Which of the following functions can be differentiated using the rules we have covered so far?

(a) \(y = 3 \cos x \cot x \)

(b) \(y = \cos(x^2) \)

(c) \(y = e^x \sin x \)

SOLUTION

(a) \(3 \cos x \cot x \) is a product of functions whose derivatives are known. This function can therefore be differentiated using the Product Rule.

(b) \(\cos(x^2) \) is a composition of the functions \(\cos x \) and \(x^2 \). We have not yet discussed how to differentiate composite functions.

(c) \(x^2 \cos x \) is a product of functions whose derivatives are known. This function can therefore be differentiated using the Product Rule.

3. Compute \(\frac{d}{dx}(\sin^2 x + \cos^2 x) \) without using the derivative formulas for \(\sin x \) and \(\cos x \).

SOLUTION Recall that \(\sin^2 x + \cos^2 x = 1 \) for all \(x \). Thus,

\[
\frac{d}{dx}(\sin^2 x + \cos^2 x) = \frac{d}{dx}1 = 0.
\]

4. How is the addition formula used in deriving the formula \(\sin(x + h) \)?

SOLUTION The difference quotient for the function \(\sin x \) involves the expression \(\sin(x + h) \). The addition formula for the sine function is used to expand this expression as \(\sin(x + h) = \sin x \cos h + \sin h \cos x \).

Exercises

In Exercises 1–4, find an equation of the tangent line at the point indicated.

1. \(y = \sin x, \quad x = \frac{\pi}{4} \)

SOLUTION Let \(f(x) = \sin x \). Then \(f'(x) = \cos x \) and the equation of the tangent line is

\[
y = f'(\frac{\pi}{4})\left(x - \frac{\pi}{4}\right) + f\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\left(x - \frac{\pi}{4}\right) + \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}(1 - \frac{\pi}{4}).
\]

2. \(y = \cos x, \quad x = \frac{\pi}{4} \)

SOLUTION Let \(f(x) = \cos x \). Then \(f'(x) = -\sin x \) and the equation of the tangent line is

\[
y = f'(\frac{\pi}{4})\left(x - \frac{\pi}{4}\right) + f\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}\left(x - \frac{\pi}{4}\right) + \frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2} + \frac{\pi}{4}.
\]

3. \(y = \tan x, \quad x = \frac{\pi}{4} \)

SOLUTION Let \(f(x) = \tan x \). Then \(f'(x) = \sec^2 x \) and the equation of the tangent line is

\[
y = f'(\frac{\pi}{4})\left(x - \frac{\pi}{4}\right) + f\left(\frac{\pi}{4}\right) = 2\left(x - \frac{\pi}{4}\right) + 1 = 2x + 1 - \frac{\pi}{2}.
\]

4. \(y = \sec x, \quad x = \frac{\pi}{6} \)

SOLUTION Let \(f(x) = \sec x \). Then \(f'(x) = \sec x \tan x \) and the equation of the tangent line is

\[
y = f'(\frac{\pi}{6})\left(x - \frac{\pi}{6}\right) + f\left(\frac{\pi}{6}\right) = \frac{2}{3}\left(x - \frac{\pi}{6}\right) + \frac{2}{\sqrt{3}} = \frac{2}{3}x + \frac{2\sqrt{3}}{3} + \frac{\pi}{9}.
\]

In Exercises 5–24, compute the derivative.

5. \(f(x) = \sin x \cos x \)

SOLUTION Let \(f(x) = \sin x \cos x \). Then

\[
f'(x) = \sin x(-\sin x) + \cos x(\cos x) = -\sin^2 x + \cos^2 x.
\]
6. \(f(x) = x^2 \cos x \)

SOLUTION Let \(f(x) = x^2 \cos x \). Then

\[
\frac{d}{dx} (x^2 \cos x) = x^2 (-\sin x) + (\cos x) (2x) = 2x \cos x - x^2 \sin x.
\]

7. \(f(x) = \sin^2 x \)

SOLUTION Let \(f(x) = \sin^2 x = \sin x \sin x \). Then

\[
\frac{d}{dx} (\sin x \cos x) = \sin x (\cos x) + \sin x (\cos x) = 2 \sin x \cos x.
\]

8. \(f(x) = 9 \sec x + 12 \cot x \)

SOLUTION Let \(f(x) = 9 \sec x + 12 \cot x \). Then \(f'(x) = 9 \sec x \tan x - 12 \csc^2 x \).

9. \(H(t) = \sin t \sec^2 t \)

SOLUTION Let \(H(t) = \sin t \sec^2 t \). Then

\[
H'(t) = \sin t \frac{d}{dt} (\sec t \cdot \sec t) + \sec^2 t (\cos t)
= \sin t (\sec t \tan t + \sec t \tan t) + \sec t
= 2 \sin t \sec^2 t \tan t + \sec t.
\]

10. \(h(t) = 9 \csc t + t \cot t \)

SOLUTION Let \(h(t) = 9 \csc t + t \cot t \). Then

\[
h'(t) = 9 (-\csc t \cot t) + (t (-\csc^2 t)) + \cot t = \cot t - 9 \csc t \cot t - t \csc^2 t.
\]

11. \(f(\theta) = \tan \theta \sec \theta \)

SOLUTION Let \(f(\theta) = \tan \theta \sec \theta \). Then

\[
f'(\theta) = \tan \theta \sec \theta \tan \theta + \sec \theta \sec^2 \theta = \sec \theta \tan^2 \theta + \sec^3 \theta = \left(\tan^2 \theta + \sec^2 \theta \right) \sec \theta.
\]

12. \(k(\theta) = \theta^2 \sin^2 \theta \)

SOLUTION Let \(k(\theta) = \theta^2 \sin^2 \theta \). Then

\[
k'(\theta) = \theta^2 (2 \sin \theta \cos \theta) + 2 \theta \sin^2 \theta = 2 \theta^2 \sin \theta \cos \theta + 2 \theta \sin^2 \theta.
\]

Here we used the result from Exercise 7.

13. \(f(x) = (2x^4 - 4x^{-1}) \sec x \)

SOLUTION Let \(f(x) = (2x^4 - 4x^{-1}) \sec x \). Then

\[
f'(x) = (2x^4 - 4x^{-1}) \sec x \tan x + \sec x (8x^3 + 4x^{-2}).
\]

14. \(f(z) = z \tan z \)

SOLUTION Let \(f(z) = z \tan z \). Then \(f'(z) = z(\sec^2 z) + \tan z \).

15. \(y = \frac{\sec \theta}{\theta} \)

SOLUTION Let \(y = \frac{\sec \theta}{\theta} \). Then

\[
y' = \frac{\theta \sec \theta \tan \theta - \sec \theta}{\theta^2}.
\]

16. \(G(z) = \frac{1}{\tan z - \cot z} \)

SOLUTION Let \(G(z) = \frac{1}{\tan z - \cot z} \). Then

\[
G'(z) = \frac{(\tan z - \cot z)(0) - 1(\sec^2 z + \csc^2 z)}{(\tan z - \cot z)^2} = -\frac{\sec^2 z + \csc^2 z}{(\tan z - \cot z)^2}.
\]

17. \(R(y) = \frac{3 \cos y - 4}{\sin y} \)
24. Let \(R(y) = \frac{3 \cos y - 4}{\sin y} \). Then
\[
R'(y) = \frac{\sin y(-3 \sin y) - (3 \cos y - 4)(\cos y)}{\sin^2 y} = \frac{4 \cos y - 3(\sin^2 y + \cos^2 y)}{\sin^2 y} = \frac{4 \cos y - 3}{\sin^2 y}.
\]

18. \(f(x) = \frac{x}{\sin x + 2} \)

SOLUTION Let \(f(x) = \frac{x}{2 + \sin x} \). Then
\[
f'(x) = \frac{(2 + \sin x)(1) - x \cos x}{(2 + \sin x)^2} = \frac{2 + \sin x - x \cos x}{(2 + \sin x)^2}.
\]

19. \(f(x) = \frac{1 + \tan x}{1 - \tan x} \)

SOLUTION Let \(f(x) = \frac{1 + \tan x}{1 - \tan x} \). Then
\[
f'(x) = \frac{(1 - \tan x) \sec^2 x - (1 + \tan x)(-\sec^2 x)}{(1 - \tan x)^2} = \frac{2 \sec^2 x}{(1 - \tan x)^2}.
\]

20. \(f(\theta) = \theta \tan \theta \sec \theta \)

SOLUTION Let \(f(\theta) = \theta \tan \theta \sec \theta \). Then
\[
f'(\theta) = \theta \frac{d}{d\theta}(\tan \theta \sec \theta) + \tan \theta \sec \theta
\]
\[
= \theta(\tan \theta \sec \theta \tan \theta + \sec \theta \sec^2 \theta) + \tan \theta \sec \theta
\]
\[
= \theta \tan^2 \theta \sec \theta + \theta \sec^3 \theta + \tan \theta \sec \theta.
\]

21. \(f(x) = e^x \sin x \)

SOLUTION Let \(f(x) = e^x \sin x \). Then \(f'(x) = e^x \cos x + \sin x e^x = e^x(\cos x + \sin x) \).

22. \(h(t) = e^{t^3} \tan(t) \)

SOLUTION Let \(h(t) = e^{t^3} \tan(t) \). Then \(h'(t) = e^{t^3} (\sec^2 t \cot(t)) + \tan(t) e^{t^3} = e^{t^3} \sec(t)(1 - \cot(t)) \).

23. \(f(\theta) = e^\theta(5 \sin \theta - 4 \tan \theta) \)

SOLUTION Let \(f(\theta) = e^\theta(5 \sin \theta - 4 \tan \theta) \). Then
\[
f'(\theta) = e^\theta(5 \cos \theta - 4 \sec^2 \theta) + e^\theta(5 \sin \theta - 4 \tan \theta)
\]
\[
= e^\theta(5 \sin \theta + 5 \cos \theta - 4 \tan \theta - 4 \sec^2 \theta).
\]

24. \(f(x) = xe^x \cos x \)

SOLUTION Let \(f(x) = xe^x \cos x \). Then
\[
f'(x) = x \frac{d}{dx}(e^x \cos x) + e^x \cos x = x(e^x(-\sin x) + \cos x e^x) + e^x \cos x
\]
\[
= e^x(x \cos x - x \sin x + \cos x).
\]

In Exercises 25–34, find an equation of the tangent line at the point specified.

25. \(y = x^3 + \cos x, \quad x = 0 \)

SOLUTION Let \(f(x) = x^3 + \cos x \). Then \(f'(x) = 3x^2 - \sin x \) and \(f'(0) = 0 \). The tangent line at \(x = 0 \) is
\[
y = f'(0)(x - 0) + f(0) = 0(x) + 1 = 1.
\]

26. \(y = \tan \theta, \quad \theta = \frac{\pi}{6} \)

SOLUTION Let \(f(\theta) = \tan \theta \). Then \(f'(\theta) = \sec^2 \theta \) and \(f'(\frac{\pi}{6}) = \frac{4}{3} \). The tangent line at \(x = \frac{\pi}{6} \) is
\[
y = f'(\frac{\pi}{6}) \left(\theta - \frac{\pi}{6} \right) + f \left(\frac{\pi}{6} \right) = \frac{4}{3} \left(\theta - \frac{\pi}{6} \right) + \frac{\sqrt{3}}{3} = \frac{4}{3} \theta + \frac{\sqrt{3}}{3} - \frac{2\pi}{9}.
\]
27. \(y = \sin x + 3 \cos x, \quad x = 0 \)

SOLUTION Let \(f(x) = \sin x + 3 \cos x \). Then \(f'(x) = \cos x - 3 \sin x \) and \(f'(0) = 1 \). The tangent line at \(x = 0 \) is

\[
y = f'(0)(x - 0) + f(0) = x + 3.
\]

28. \(y = \frac{\sin t}{1 + \cos t}, \quad t = \frac{\pi}{3} \)

SOLUTION Let \(f(t) = \frac{\sin t}{1 + \cos t} \). Then

\[
f'(t) = \frac{(1 + \cos t)(\cos t) - \sin t(-\sin t)}{(1 + \cos t)^2} = \frac{1 + \cos t}{(1 + \cos t)^2} = \frac{1}{1 + \cos t},
\]

and

\[
f'\left(\frac{\pi}{3}\right) = \frac{1}{1 + 1/2} = \frac{2}{3}.
\]

The tangent line at \(x = \frac{\pi}{3} \) is

\[
y = f'\left(\frac{\pi}{3}\right)\left(x - \frac{\pi}{3}\right) + f\left(\frac{\pi}{3}\right) = \frac{2}{3} \left(x - \frac{\pi}{3}\right) + \frac{\sqrt{3}}{3} = \frac{2}{3}x + \frac{\sqrt{3}}{3} - \frac{2\pi}{9}.
\]

29. \(y = 2(\sin \theta + \cos \theta), \quad \theta = \frac{\pi}{4} \)

SOLUTION Let \(f(\theta) = 2(\sin \theta + \cos \theta) \). Then \(f'(\theta) = 2(\cos \theta - \sin \theta) \) and \(f'(\frac{\pi}{4}) = 1 - \sqrt{2} \). The tangent line at \(x = \frac{\pi}{4} \) is

\[
y = f'\left(\frac{\pi}{4}\right)\left(x - \frac{\pi}{4}\right) + f\left(\frac{\pi}{4}\right) = (1 - \sqrt{2}) \left(x - \frac{\pi}{4}\right) + 1 + \sqrt{2}.
\]

30. \(y = \csc x - \cot x, \quad x = \frac{\pi}{4} \)

SOLUTION Let \(f(x) = \csc x - \cot x \). Then

\[
f'(x) = \csc^2 x - \csc x \cot x
\]

and

\[
f'\left(\frac{\pi}{4}\right) = 2 - \sqrt{2} \cdot 1 = 2 - \sqrt{2}.
\]

Hence the tangent line is

\[
y = f'\left(\frac{\pi}{4}\right)\left(x - \frac{\pi}{4}\right) + f\left(\frac{\pi}{4}\right) = (2 - \sqrt{2}) \left(x - \frac{\pi}{4}\right) + (\sqrt{2} - 1)
\]

\[
= (2 - \sqrt{2}) x + \sqrt{2} - 1 + \frac{\pi}{4} (\sqrt{2} - 2).
\]

31. \(y = e^x \cos x, \quad x = 0 \)

SOLUTION Let \(f(x) = e^x \cos x \). Then

\[
f'(x) = e^x(-\sin x) + e^x \cos x = e^x \cos (x - \sin x),
\]

and \(f'(0) = e^0(\cos 0 - \sin 0) = 1 \). Thus, the equation of the tangent line is

\[
y = f'(0)(x - 0) + f(0) = x + 1.
\]

32. \(y = e^x \cos^2 x, \quad x = \frac{\pi}{4} \)

SOLUTION Let \(f(x) = e^x \cos^2 x \). Then

\[
f'(x) = e^x \frac{d}{dx}(\cos x \cdot \cos x) + e^x \cos^2 x = e^x(\cos x(-\sin x) + \cos x(-\sin x)) + e^x \cos^2 x
\]

\[
= e^x(\cos^2 x - 2 \sin x \cos x),
\]

and

\[
f'\left(\frac{\pi}{4}\right) = e^{\pi/4} \left(\frac{1}{2} - 1\right) = -\frac{1}{2} e^{\pi/4}.
\]

The tangent line at \(x = \frac{\pi}{4} \) is

\[
y = f'\left(\frac{\pi}{4}\right)\left(x - \frac{\pi}{4}\right) + f\left(\frac{\pi}{4}\right) = \frac{1}{2} e^{\pi/4} \left(x - \frac{\pi}{4}\right) + \frac{1}{2} e^{\pi/4}.
\]
In Exercises 35–37, use Theorem 1 to verify the formula.

35. \(\frac{d}{dx} \cot x = -\csc^2 x \)

SOLUTION

\[
\frac{d}{dx} \cot x = \frac{\cos x}{\sin x}
\]

Using the quotient rule and the derivative formulas, we compute:

\[
\frac{d}{dx} \cot x = \frac{\cos x}{\sin x} - \frac{\cos x \cdot (-\sin x) - \sin x \cdot (\cos x) \cdot \sin x}{\sin^2 x} = -\frac{(\cos^2 x + \sin^2 x)}{\sin^2 x} = -\frac{1}{\sin^2 x} = -\csc^2 x.
\]

36. \(\frac{d}{dx} \sec x = \sec x \tan x \)

SOLUTION

Since \(\sec x = \frac{1}{\cos x} \), we can apply the quotient rule and the known derivatives to get:

\[
\frac{d}{dx} \sec x = \frac{1}{\cos x} \frac{d}{dx} \cos x = \frac{\sin x}{\cos x} \sec x = \sin x \frac{1}{\cos x} = \tan x \sec x.
\]

37. \(\frac{d}{dx} \csc x = -\csc x \cot x \)

SOLUTION

Since \(\csc x = \frac{1}{\sin x} \), we can apply the quotient rule and the two known derivatives to get:

\[
\frac{d}{dx} \csc x = \frac{1}{\sin x} \frac{d}{dx} \sin x = \frac{\sin x}{\cos x} \csc x = -\cos x \frac{1}{\sin x} = -\cot x \csc x.
\]

38. Show that both \(y = \sin x \) and \(y = \cos x \) satisfy \(y'' = -y \).

SOLUTION

Let \(y = \sin x \). Then \(y' = \cos x \) and \(y'' = -\sin x = -y \). Similarly, if we let \(y = \cos x \), then \(y' = -\sin x \) and \(y'' = -\cos x = -y \).

In Exercises 39–42, calculate the higher derivative.

39. \(f''(\theta), \quad f(\theta) = \theta \sin \theta \)

SOLUTION

Let \(f(\theta) = \theta \sin \theta \). Then

\[
f'(\theta) = \theta \cos \theta + \sin \theta
\]

\[
f''(\theta) = \theta (-\sin \theta) + \cos \theta + \cos \theta = -\theta \sin \theta + 2 \cos \theta.
\]

40. \(\frac{d^2}{dt^2} \cos^2 t \)

SOLUTION

\[
\frac{d}{dt} \cos^2 t = \frac{d}{dt} (\cos t \cdot \cos t) = \cos t (-\sin t) + \cos t (-\sin t) = -2 \sin t \cos t
\]

\[
\frac{d^2}{dt^2} \cos^2 t = \frac{d}{dt} (-2 \sin t \cos t) = -2(\sin t (-\sin t) + \cos t \cos t) = -2(\cos^2 t - \sin^2 t).
\]
41. \(y''', \quad y''' = \tan x \)

SOLUTION Let \(y = \tan x \). Then \(y' = \sec^2 x \) and by the Chain Rule,

\[
y'' = \frac{d}{dx} \sec^2 x = 2(\sec x)(\sec x \tan x) = 2 \sec^2 x \tan x
\]

\[
y''' = 2 \sec^2 x (\sec^2 x) + (2 \sec^2 x \tan x) \tan x = 2 \sec^4 + 4 \sec^4 x \tan^2 x
\]

42. \(y''', \quad y'' = e^t \sin t \)

SOLUTION Let \(y = e^t \sin t \). Then

\[
y' = e^t \cos t + e^t \sin t = e^t(\cos t + \sin t)
\]

\[
y'' = e^t(-\sin t + \cos t) + e^t(\cos t + \sin t) = 2e^t \cos t
\]

\[
y''' = 2e^t(-\sin t) + 2e^t \cos t = 2e^t(\cos t - \sin t).
\]

43. Calculate the first five derivatives of \(f(x) = \cos x \). Then determine \(f^{(8)} \) and \(f^{(37)} \).

SOLUTION Let \(f(x) = \cos x \).

- Then \(f'(x) = -\sin x \), \(f''(x) = -\cos x \), \(f'''(x) = \sin x \), \(f^{(4)}(x) = \cos x \), and \(f^{(5)}(x) = -\sin x \).

- Accordingly, the successive derivatives of \(f \) cycle among

\[
\{ -\sin x, -\cos x, \sin x, \cos x \}
\]

in that order. Since 8 is a multiple of 4, we have \(f^{(8)}(x) = \cos x \).

- Since 36 is a multiple of 4, we have \(f^{(36)}(x) = \cos x \). Therefore, \(f^{(37)}(x) = -\sin x \).

44. Find \(y^{(157)} \), where \(y = \sin x \).

SOLUTION Let \(f(x) = \sin x \). Then the successive derivatives of \(f \) cycle among

\[
\{ \cos x, -\sin x, -\cos x, \sin x \}
\]

in that order. Since 156 is a multiple of 4, we have \(f^{(156)}(x) = \sin x \). Therefore, \(f^{(157)}(x) = \cos x \).

45. Find the values of \(x \) between 0 and \(2\pi \) where the tangent line to the graph of \(y = \sin x \cos x \) is horizontal.

SOLUTION Let \(y = \sin x \cos x \). Then

\[
y' = (\sin x)(-\sin x) + (\cos x)(\cos x) = \cos^2 x - \sin^2 x.
\]

When \(y' = 0 \), we have \(\sin x = \pm \cos x \). In the interval \([0, 2\pi]\), this occurs when \(x = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \).

46. **[GU]** Plot the graph \(f(\theta) = \sec \theta + \csc \theta \) over \([0, 2\pi]\) and determine the number of solutions to \(f'(\theta) = 0 \) in this interval graphically. Then compute \(f'(\theta) \) and find the solutions.

SOLUTION The graph of \(f(\theta) = \sec \theta + \csc \theta \) over \([0, 2\pi]\) is given below. From the graph, it appears that there are two locations where the tangent line would be horizontal; that is, there appear to be two solutions to \(f'(\theta) = 0 \). Now \(f'(\theta) = \sec \theta \tan \theta - \csc \theta \cot \theta \). Setting \(\sec \theta \tan \theta = \csc \theta \cot \theta = 0 \) and then multiplying by \(\sin \theta \tan \theta \) and rearranging terms yields \(\tan^3 \theta = 1 \). Thus, on the interval \([0, 2\pi]\), there are two solutions of \(f'(\theta) = 0 \): \(\theta = \frac{\pi}{4} \) and \(\theta = \frac{5\pi}{4} \).

![Graph of f(\theta) = \sec \theta + \csc \theta over [0, 2\pi]](image)

47. **[GU]** Let \(g(t) = t - \sin t \).

(a) Plot the graph of \(g \) with a graphing utility for \(0 \leq t \leq 4\pi \).

(b) Show that the slope of the tangent line is nonnegative. Verify this on your graph.

(c) For which values of \(t \) in the given range is the tangent line horizontal?

SOLUTION Let \(g(t) = t - \sin t \).

(a) Here is a graph of \(g \) over the interval \([0, 4\pi]\).
(b) Since \(g'(t) = 1 - \cos t \geq 0 \) for all \(t \), the slope of the tangent line to \(g \) is always nonnegative.

(e) In the interval \([0, 4\pi)\), the tangent line is horizontal when \(t = 0, 2\pi, 4\pi \).

48. \(\mathcal{C}_\mathcal{R}_5 \) Let \(f(x) = (\sin x)/x \) for \(x \neq 0 \) and \(f(0) = 1 \).

(a) Plot \(f(x) \) on \([-3\pi, 3\pi]\).

(b) Show that \(f'(c) = 0 \) if \(c = \tan c \). Use the numerical root finder on a computer algebra system to find a good approximation to the smallest positive value \(c_0 \) such that \(f'(c_0) = 0 \).

(c) Verify that the horizontal line \(y = f(c_0) \) is tangent to the graph of \(y = f(x) \) at \(x = c_0 \) by plotting them on the same set of axes.

SOLUTION

(a) Here is the graph of \(f(x) \) over \([-3\pi, 3\pi]\).

(b) Let \(f(x) = \frac{\sin x}{x} \). Then

\[
f'(x) = \frac{x \cos x - \sin x}{x^2},
\]

To have \(f'(c) = 0 \), it follows that \(c \cos c - \sin c = 0 \), or

\[
\tan c = c.
\]

Using a computer algebra system, we find that the smallest positive value \(c_0 \) such that \(f'(c_0) = 0 \) is \(c_0 = 4.493409 \).

(c) The horizontal line \(y = f(c_0) = 0.217234 \) and the function \(y = f(x) \) are both plotted below. The horizontal line is clearly tangent to the graph of \(f(x) \).

49. **Show that no tangent line to the graph of \(f(x) = \tan x \) has zero slope. What is the least slope of a tangent line? Justify by sketching the graph of \((\tan x)' \).**

SOLUTION Let \(f(x) = \tan x \). Then \(f'(x) = \sec^2 x = \frac{1}{\cos^2 x} \). Note that \(f'(x) = \frac{1}{\cos^2 x} \) has numerator 1; the equation \(f'(x) = 0 \) therefore has no solution. Because the maximum value of \(\cos^2 x \) is 1, the minimum value of \(f'(x) = \frac{1}{\cos^2 x} \) is 1. Hence, the least slope for a tangent line to \(\tan x \) is 1. Here is a graph of \(f' \).
50. The height at time t (in seconds) of a mass, oscillating at the end of a spring, is $s(t) = 300 + 40 \sin t$ cm. Find the velocity and acceleration at $t = \frac{\pi}{4}$ s.

Solution Let $s(t) = 300 + 40 \sin t$ be the height. Then the velocity is

$$v(t) = s'(t) = 40 \cos t$$

and the acceleration is

$$a(t) = v'(t) = -40 \sin t.$$

At $t = \frac{\pi}{4}$, the velocity is $v \left(\frac{\pi}{4} \right) = 20 \text{ cm/sec}$ and the acceleration is $a \left(\frac{\pi}{4} \right) = -20 \sqrt{3} \text{ cm/sec}^2$.

51. The horizontal range R of a projectile launched from ground level at an angle θ and initial velocity v_0 m/s is $R = \left(\frac{v_0^2}{g} \right) \sin \theta \cos \theta$. Calculate $dR/d\theta$. If $\theta = \pi/24$, will the range increase or decrease if the angle is increased slightly? Base your answer on the sign of the derivative.

Solution Let $R(\theta) = \left(\frac{v_0^2}{g} \right) \sin \theta \cos \theta$.

$$\frac{dR}{d\theta} = R'(\theta) = \left(\frac{v_0^2}{g} \right) (-\sin^2 \theta + \cos^2 \theta).$$

If $\theta = \pi/24$, $\frac{\pi}{4} < \theta < \frac{\pi}{2}$, so $|\sin \theta| > |\cos \theta|$, and $dR/d\theta < 0$ (numerically, $dR/d\theta = -0.0264101v_0^2$). At this point, increasing the angle will decrease the range.

52. Show that if $\frac{\pi}{4} < \theta < \pi$, then the distance along the x-axis between θ and the point where the tangent line intersects the x-axis is equal to $|\tan \theta|$ (Figure 1).

Solution Let $f(x) = \sin x$. Since $f'(x) = \cos x$, this means that the tangent line at $(\theta, \sin \theta)$ is $y = \cos \theta(x - \theta) + \sin \theta$.

When $y = 0$, $x = \theta - \tan \theta$. The distance from x to θ is then

$$|\theta - (\theta - \tan \theta)| = |\tan \theta|.$$

Further Insights and Challenges

53. Use the limit definition of the derivative and the addition law for the cosine function to prove that $(\cos x)' = -\sin x$.

Solution Let $f(x) = \cos x$. Then

$$f'(x) = \lim_{h \to 0} \frac{\cos(x + h) - \cos x}{h} = \lim_{h \to 0} \cos x \cos h - \sin x \sin h - \cos x$$

$$= \lim_{h \to 0} \left(-\sin x \frac{\sin h}{h} + (\cos x) \frac{\cos h - 1}{h} \right) = (-\sin x) \cdot 1 + (\cos x) \cdot 0 = -\sin x.$$

54. Use the addition formula for the tangent

$$\tan(x + h) = \frac{\tan x + \tan h}{1 + \tan x \tan h}$$

to compute $(\tan x)'$ directly as a limit of the difference quotients. You will also need to show that $\lim_{h \to 0} \frac{\tan h}{h} = 1$.

Solution First note that

$$\lim_{h \to 0} \frac{\tan h}{h} = \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\cos h} = \lim_{h \to 0} = 1(1) = 1.$$

Now, using the addition formula for tangent,

$$\frac{\tan(x + h) - \tan x}{h} = \frac{\tan x + \tan h}{1 + \tan x \tan h} - \tan x$$
In other words, \(F = 55 \).

Therefore,

\[
\frac{d}{dx} \tan x = \lim_{h \to 0} \frac{\tan h}{h} \cdot \frac{\sec^2 x}{1 + \tan x \tan h} = \lim_{h \to 0} \frac{\tan h}{h} \cdot \lim_{h \to 0} \frac{\sec^2 x}{1 + \tan x \tan h} = 1(\sec^2 x) = \sec^2 x.
\]

55. Verify the following identity and use it to give another proof of the formula \((\sin x)' = \cos x\).

\[
\sin(x + h) - \sin x = 2 \cos \left(x + \frac{h}{2} \right) \sin \left(\frac{h}{2} \right)
\]

\textit{Hint:} Use the addition formula to prove that \(\sin(a + b) - \sin(a - b) = 2 \cos a \sin b\).

\textbf{SOLUTION} \hspace{1cm} \text{Recall that}

\[
\sin(a + b) = \sin a \cos b + \cos a \sin b
\]

and

\[
\sin(a - b) = \sin a \cos b - \cos a \sin b.
\]

Subtracting the second identity from the first yields

\[
\sin(a + b) - \sin(a - b) = 2 \cos a \sin b.
\]

If we now set \(a = x + \frac{h}{2} \) and \(b = \frac{h}{2} \), then the previous equation becomes

\[
\sin(x + h) - \sin x = 2 \cos \left(x + \frac{h}{2} \right) \sin \left(\frac{h}{2} \right).
\]

Finally, we use the limit definition of the derivative of \(\sin x\) to obtain

\[
\frac{d}{dx} \sin x = \lim_{h \to 0} \frac{\sin(x + h) - \sin x}{h} = \lim_{h \to 0} \frac{2 \cos \left(x + \frac{h}{2} \right) \sin \left(\frac{h}{2} \right)}{h}
\]

\[
= \lim_{h \to 0} \cos \left(x + \frac{h}{2} \right) \cdot \lim_{h \to 0} \frac{\sin \left(\frac{h}{2} \right)}{\frac{h}{2}} = \cos x \cdot 1 = \cos x.
\]

In other words, \(\frac{d}{dx} (\sin x) = \cos x \).

56. \hspace{1cm} \textit{Show that a nonzero polynomial function} \(y = f(x) \) \textit{cannot satisfy the equation} \(y'' = -y \). \textit{Use this to prove that neither} \(\sin x \) \textit{nor} \(\cos x \) \textit{is a polynomial}. \textit{Can you think of another way to reach this conclusion by considering limits as} \(x \to \infty \)?

\textbf{SOLUTION}

- Let \(p \) \textit{be a nonzero polynomial of degree} \(n \) \textit{and assume} that \(p \) \textit{ satisfies the differential equation} \(y'' + y = 0 \). \textit{Then} \(p'' + p = 0 \) \textit{for all} \(x \). \textit{There are exactly three cases.}

 (a) If \(n = 0 \), then \(p \) \textit{is a constant polynomial and thus} \(p'' = 0 \). \textit{Hence} \(0 = p'' + p = p \) \textit{or} \(p = 0 \) \textit{(i.e.,} \(p \) \textit{is equal to} \(0 \) \textit{for all} \(x \) \textit{or} \(p \) \textit{is identically} \(0 \)). \textit{This is a contradiction, since} \(p \) \textit{is a nonzero polynomial}.

 (b) If \(n = 1 \), then \(p \) \textit{is a linear polynomial and thus} \(p'' = 0 \). \textit{Once again, we have} \(0 = p'' + p = p \) \textit{or} \(p = 0 \), \textit{a contradiction since} \(p \) \textit{is a nonzero polynomial}.

 (c) If \(n \geq 2 \), then \(p \) \textit{is at least a quadratic polynomial and thus} \(p'' \) \textit{is a polynomial of degree} \(n - 2 \geq 0 \). \textit{Thus} \(q = p'' + p \) \textit{is a polynomial of degree} \(n \geq 2 \). \textit{By assumption, however,} \(p'' + p = 0 \). \textit{Thus} \(q = 0 \), \textit{a polynomial of degree} \(0 \). \textit{This is a contradiction, since the degree of} \(q \) \textit{is} \(n \geq 2 \).

\textit{CONCLUSION:} In all cases, we have reached a contradiction. \textit{Therefore the assumption} that \(p \) \textit{ satisfies the differential equation} \(y'' + y = 0 \) \textit{ is false}. \textit{Accordingly, a nonzero polynomial cannot} \textit{ satisfy the stated differential equation}.

- Let \(y = \sin x \). \textit{Then} \(y' = \cos x \) \textit{ and} \(y'' = -\sin x \). \textit{Therefore,} \(y'' = -y \). \textit{Now, let} \(y = \cos x \). \textit{Then} \(y' = -\sin x \) \textit{ and} \(y'' = -\cos x \). \textit{Therefore,} \(y'' = -y \). \textit{Because} \(\sin x \) \textit{ and} \(\cos x \) \textit{ are nonzero functions that satisfy} \(y'' = -y \), \textit{ it follows that neither} \(\sin x \) \textit{ nor} \(\cos x \) \textit{ is a polynomial}.
57. Let \(f(x) = x \sin x \) and \(g(x) = x \cos x \).

(a) Show that \(f'(x) = g(x) + \sin x \) and \(g'(x) = -f(x) + \cos x \).

(b) Verify that \(f''(x) = -f(x) + 2 \cos x \) and \(g''(x) = -g(x) - 2 \sin x \).

(c) By further experimentation, try to find formulas for all higher derivatives of \(f \) and \(g \). \(\text{Hint:} \) The \(k \)th derivative depends on whether \(k = 4n, 4n + 1, 4n + 2, \) or \(4n + 3 \).

SOLUTION Let \(f(x) = x \sin x \) and \(g(x) = x \cos x \).

(a) We examine first derivatives: \(f'(x) = x \cos x + (\sin x) \cdot 1 = g(x) + \sin x \) and \(g'(x) = (x)(-\sin x) + (\cos x) \cdot 1 = -f(x) + \cos x \); i.e., \(f'(x) = g(x) + \sin x \) and \(g'(x) = -f(x) + \cos x \).

(b) Now look at second derivatives: \(f''(x) = g'(x) + \cos x = -f(x) + 2 \cos x \) and \(g''(x) = -f'(x) - \sin x = -g(x) - 2 \sin x \); i.e., \(f''(x) = -f(x) + 2 \cos x \) and \(g''(x) = -g(x) - 2 \sin x \).

(c) The third derivatives are \(f'''(x) = -f'(x) - 2 \sin x = -g(x) - 3 \sin x \) and \(g'''(x) = -g'(x) - 2 \cos x = f(x) - 3 \cos x \); i.e., \(f'''(x) = -g(x) - 3 \sin x \) and \(g'''(x) = f(x) - 3 \cos x \).

The fourth derivatives are \(f^{(4)}(x) = -g'(x) - 3 \cos x = f(x) - 4 \cos x \) and \(g^{(4)}(x) = f'(x) + 3 \sin x = g(x) + 4 \sin x \); i.e., \(f^{(4)}(x) = f(x) - 4 \cos x \) and \(g^{(4)}(x) = g(x) + 4 \sin x \).

We can now see the pattern for the derivatives, which are summarized in the following table. Here \(n = 0, 1, 2, \ldots \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>(4n)</th>
<th>(4n + 1)</th>
<th>(4n + 2)</th>
<th>(4n + 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f^{(k)}(x))</td>
<td>(f(x) - k \cos x)</td>
<td>(g(x) + k \sin x)</td>
<td>(-f(x) + k \cos x)</td>
<td>(-g(x) - k \sin x)</td>
</tr>
<tr>
<td>(g^{(k)}(x))</td>
<td>(g(x) + k \sin x)</td>
<td>(-f(x) + k \cos x)</td>
<td>(-g(x) - k \sin x)</td>
<td>(f(x) - k \cos x)</td>
</tr>
</tbody>
</table>

58. Figure 2 shows the geometry behind the derivative formula \((\sin \theta)' = \cos \theta \). Segments \(\overline{BA} \) and \(\overline{BD} \) are parallel to the \(x \)- and \(y \)-axes. Let \(\Delta \sin \theta = \sin(\theta + h) - \sin \theta \). Verify the following statements.

(a) \(\Delta \sin \theta = BC \)

(b) \(\angle BDA = \theta \) \(\text{Hint:} \) \(\overline{OA} \perp \overline{AD} \).

(c) \(BD = (\cos \theta)AD \)

Now explain the following intuitive argument: If \(h \) is small, then \(BC \approx BD \) and \(AD \approx h \), so \(\Delta \sin \theta \approx (\cos \theta)h \) and \((\sin \theta)' = \cos \theta \).

SOLUTION (a) We note that \(\sin(\theta + h) \) is the \(y \)-coordinate of the point \(C \) and \(\sin \theta \) is the \(y \)-coordinate of the point \(A \), and therefore also of the point \(B \). Now, \(\Delta \sin \theta = \sin(\theta + h) - \sin \theta \) can be interpreted as the difference between the \(y \)-coordinates of the points \(B \) and \(C \); that is, \(\Delta \sin \theta = BC \).

(b) From the figure, we note that \(\angle OAB = \theta \), so \(\angle BAD = \pi - \theta \) and \(\angle BDA = \theta \).

(c) Using part (b), it follows that

\[
\cos \theta = \frac{BD}{AD} \quad \text{or} \quad BD = (\cos \theta)AD.
\]

For \(h \) “small,” \(BC \approx BD \) and \(AD \) is roughly the length of the arc subtended from \(A \) to \(C \); that is, \(AD \approx 1(h) = h \). Thus, using (a) and (c),

\[
\Delta \sin \theta = BC \approx BD = (\cos \theta)AD \approx (\cos \theta)h.
\]

In the limit as \(h \to 0 \),

\[
\frac{\Delta \sin \theta}{h} \to (\sin \theta)',
\]

so \((\sin \theta)' = \cos \theta \).