Let R be the shaded region in the first quadrant enclosed by the graphs of $y = e^{-x^2}$, $y = 1 - \cos x$, and the y-axis, as shown in the figure above.

(a) Find the area of the region R.

(b) Find the volume of the solid generated when the region R is revolved about the x-axis.

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

Region R

$e^{-x^2} = 1 - \cos x$ at $x = 0.941944 = A$

(a) Area $= \int_0^A (e^{-x^2} - (1 - \cos x))\,dx$

$= 0.590$ or 0.591

(b) Volume $= \pi \int_0^A \left((e^{-x^2})^2 - (1 - \cos x)^2 \right)\,dx$

$= 0.55596\pi = 1.746$ or 1.747

(c) Volume $= \int_0^A \left(e^{-x^2} - (1 - \cos x) \right)^2 \,dx$

$= 0.461$